Skip to content

gemdat.jumps

Jumps(transitions, *, conversion_method=_generic_transitions_to_jumps, minimal_residence=0)

Parameters:

  • transitions (Transitions) –

    pymatgen transitions in which to calculate jumps

  • conversion_method (Callable[[Transitions,int], pd.DataFrame]:, default: _generic_transitions_to_jumps ) –

    conversion method that translates the Transitions into Jumps, second parameter is the minimal_residence parameter

  • minimal_residence (int, default: 0 ) –

    minimal residence, number of timesteps that an atom needs to reside on a destination site to count as a jump, passed through to conversion method

Source code in src/gemdat/jumps.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def __init__(self,
             transitions: Transitions,
             *,
             conversion_method: Callable[
                 [Transitions,
                  DefaultNamedArg(int, 'minimal_residence')],
                 pd.DataFrame] = _generic_transitions_to_jumps,
             minimal_residence: int = 0):
    """Analyze transitions and classify them as jumps.

    Parameters
    ----------
    transitions : Transitions
        pymatgen transitions in which to calculate jumps
    conversion_method : Callable[[Transitions,int], pd.DataFrame]:
        conversion method that translates the Transitions into Jumps,
        second parameter is the `minimal_residence` parameter
    minimal_residence : int
        minimal residence, number of timesteps that an atom needs to reside
        on a destination site to count as a jump, passed through to conversion
        method
    """
    self.transitions = transitions
    self.trajectory = transitions.diff_trajectory
    self.sites = transitions.sites
    self.conversion_method = conversion_method
    self.data = conversion_method(transitions,
                                  minimal_residence=minimal_residence)

jump_names: list[str] property

Return list of jump names.

n_floating: int property

Return number of floating species.

n_jumps: int property

Return total number of jumps.

n_solo_jumps: int property

Return number of solo jumps.

site_pairs: list[tuple[str, str]] property

Return list of all unique site pairs.

solo_fraction: float property

Fraction of solo jumps.

activation_energies(n_parts=10)

Calculate activation energies for jumps (UNITS?).

Parameters:

  • n_parts (10, default: 10 ) –

    Number of parts to split the data into

Returns:

  • df ( DataFrame ) –

    Dataframe with jump activation energies and standard deviations between site pairs.

Source code in src/gemdat/jumps.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
@weak_lru_cache()
def activation_energies(self, n_parts: int = 10) -> pd.DataFrame:
    """Calculate activation energies for jumps (UNITS?).

    Parameters
    ----------
    n_parts : 10
        Number of parts to split the data into

    Returns
    -------
    df : pd.DataFrame
        Dataframe with jump activation energies and standard deviations between site pairs.
    """
    trajectory = self.trajectory
    attempt_freq, _ = SimulationMetrics(trajectory).attempt_frequency()

    dct = {}

    temperature = trajectory.metadata['temperature']

    atom_locations_parts = [
        part.atom_locations() for part in self.transitions.split(n_parts)
    ]
    jumps_counter_parts = [
        part.jumps_counter() for part in self.split(n_parts)
    ]
    n_floating = self.n_floating

    for site_pair in self.site_pairs:
        site_start, site_stop = site_pair

        n_jumps = np.array(
            [part[site_pair] for part in jumps_counter_parts])

        part_time = trajectory.total_time / n_parts

        atom_percentage = np.array(
            [part[site_start] for part in atom_locations_parts])

        denom = atom_percentage * n_floating * part_time

        eff_rate = n_jumps / denom

        # For A-A jumps divide by two for a fair comparison of A-A jumps vs. A-B and B-A
        if site_start == site_stop:
            eff_rate /= 2

        e_act_arr = -np.log(eff_rate / attempt_freq) * (
            Boltzmann * temperature) / elementary_charge

        dct[site_start, site_stop] = np.mean(e_act_arr), np.std(e_act_arr,
                                                                ddof=1)

    df = pd.DataFrame(dct).T
    df.columns = ('energy', 'std')

    return df

collective(max_dist=1)

Calculate collective jumps.

Parameters:

  • max_dist (float, default: 1 ) –

    Maximum distance for collective motions in Angstrom

Returns:

  • collective ( Collective ) –

    Output class with data on collective jumps

Source code in src/gemdat/jumps.py
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
@weak_lru_cache()
def collective(self, max_dist: float = 1) -> Collective:
    """Calculate collective jumps.

    Parameters
    ----------
    max_dist : float, optional
        Maximum distance for collective motions in Angstrom

    Returns
    -------
    collective : Collective
        Output class with data on collective jumps
    """

    trajectory = self.trajectory
    sites = self.transitions.sites

    time_step = trajectory.time_step
    attempt_freq, _ = SimulationMetrics(trajectory).attempt_frequency()

    max_steps = ceil(1.0 / (attempt_freq * time_step))

    return Collective(
        jumps=self,
        sites=sites,
        lattice=trajectory.get_lattice(),
        max_steps=max_steps,
        max_dist=max_dist,
    )

jump_diffusivity(dimensions)

Calculate jump diffusivity.

Parameters:

  • dimensions (int) –

    Number of diffusion dimensions

Returns:

  • jump_diff ( float ) –

    Jump diffusivity in m^2/s

Source code in src/gemdat/jumps.py
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
@weak_lru_cache()
def jump_diffusivity(self, dimensions: int) -> float:
    """Calculate jump diffusivity.

    Parameters
    ----------
    dimensions : int
        Number of diffusion dimensions

    Returns
    -------
    jump_diff : float
        Jump diffusivity in m^2/s
    """
    lattice = self.trajectory.get_lattice()
    sites = self.sites
    total_time = self.trajectory.total_time

    pdist = lattice.get_all_distances(sites.frac_coords, sites.frac_coords)

    jump_diff = np.sum(pdist**2 * self.matrix())
    jump_diff *= angstrom**2 / (2 * dimensions * self.n_floating *
                                total_time)

    jump_diff = FloatWithUnit(jump_diff, 'm^2 s^-1')

    return jump_diff

jumps_counter()

Calculate number of jumps between sites.

Returns:

  • jumps ( dict[tuple[str, str], int] ) –

    Dictionary with number of jumps per sites combination

Source code in src/gemdat/jumps.py
302
303
304
305
306
307
308
309
310
311
312
313
def jumps_counter(self) -> Counter:
    """Calculate number of jumps between sites.

    Returns
    -------
    jumps : dict[tuple[str, str], int]
        Dictionary with number of jumps per sites combination
    """
    labels = self.sites.labels
    jumps = Counter([(labels[i], labels[j]) for _, (
        i, j) in self.data[['start site', 'destination site']].iterrows()])
    return jumps

matrix()

Convert list of transition events to dense matrix.

Returns:

  • transitions_matrix ( ndarray ) –

    Square matrix with number of each transitions

Source code in src/gemdat/jumps.py
200
201
202
203
204
205
206
207
208
209
210
@weak_lru_cache()
def matrix(self) -> np.ndarray:
    """Convert list of transition events to dense matrix.

    Returns
    -------
    transitions_matrix : np.ndarray
        Square matrix with number of each transitions
    """
    return _calculate_transitions_matrix(self.data,
                                         n_sites=self.transitions.n_sites)

plot_collective_jumps(**kwargs)

See gemdat.plots.collective_jumps for more information.

Source code in src/gemdat/jumps.py
373
374
375
376
def plot_collective_jumps(self, **kwargs):
    """See [gemdat.plots.collective_jumps][] for more information."""
    from gemdat import plots
    return plots.collective_jumps(jumps=self, **kwargs)

plot_jumps_3d(**kwargs)

See gemdat.plots.jumps_3d for more information.

Source code in src/gemdat/jumps.py
378
379
380
381
def plot_jumps_3d(self, **kwargs):
    """See [gemdat.plots.jumps_3d][] for more information."""
    from gemdat import plots
    return plots.jumps_3d(jumps=self, **kwargs)

plot_jumps_3d_animation(**kwargs)

See gemdat.plots.jumps_3d_animation for more information.

Source code in src/gemdat/jumps.py
383
384
385
386
def plot_jumps_3d_animation(self, **kwargs):
    """See [gemdat.plots.jumps_3d_animation][] for more information."""
    from gemdat import plots
    return plots.jumps_3d_animation(jumps=self, **kwargs)

plot_jumps_vs_distance(**kwargs)

See gemdat.plots.jumps_vs_distance for more information.

Source code in src/gemdat/jumps.py
363
364
365
366
def plot_jumps_vs_distance(self, **kwargs):
    """See [gemdat.plots.jumps_vs_distance][] for more information."""
    from gemdat import plots
    return plots.jumps_vs_distance(jumps=self, **kwargs)

plot_jumps_vs_time(**kwargs)

See gemdat.plots.jumps_vs_time for more information.

Source code in src/gemdat/jumps.py
368
369
370
371
def plot_jumps_vs_time(self, **kwargs):
    """See [gemdat.plots.jumps_vs_time][] for more information."""
    from gemdat import plots
    return plots.jumps_vs_time(jumps=self, **kwargs)

rates(n_parts=10)

Calculate jump rates (total jumps / second).

Returns:

  • df ( DataFrame ) –

    Dataframe with jump rates and standard deviations between site pairs

Source code in src/gemdat/jumps.py
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
@weak_lru_cache()
def rates(self, n_parts: int = 10) -> pd.DataFrame:
    """Calculate jump rates (total jumps / second).

    Returns
    -------
    df : pd.DataFrame
        Dataframe with jump rates and standard deviations between site pairs
    """
    dct = {}

    parts = [part.jumps_counter() for part in self.split(n_parts)]

    for site_pair in self.site_pairs:
        n_jumps = [part[site_pair] for part in parts]

        part_time = self.trajectory.total_time / n_parts
        denom = self.n_floating * part_time

        jump_freq_mean = np.mean(n_jumps) / denom
        jump_freq_std = np.std(n_jumps, ddof=1) / denom

        dct[site_pair] = float(jump_freq_mean), float(jump_freq_std)

    df = pd.DataFrame(dct).T
    df.columns = ('rates', 'std')

    return df

split(n_parts)

Split the jumps into parts.

Parameters:

  • n_parts (int) –

    Number of parts to split the data into

Returns:

Source code in src/gemdat/jumps.py
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def split(self, n_parts: int) -> list[Jumps]:
    """Split the jumps into parts.

    Parameters
    ----------
    n_parts : int
        Number of parts to split the data into

    Returns
    -------
    jumps : list[Jumps]
    """
    parts = self.transitions.split(n_parts)

    return [
        Jumps(part, conversion_method=self.conversion_method)
        for part in parts
    ]